
JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2009.5.929
MANAGEMENT OPTIMIZATION
Volume 5, Number 4, November 2009 pp. 929–950

A NETWORK SIMPLEX ALGORITHM FOR SOLVING THE
MINIMUM DISTRIBUTION COST PROBLEM

I-Lin Wang and Shiou-Jie Lin

Department of Industrial and Information Management
National Cheng Kung University

Tainan, 701, Taiwan

(Communicated by Shu-Cherng Fang)

Abstract. To model the distillation or decomposition of products in some
manufacturing processes, a minimum distribution cost problem (MDCP) for
a specialized manufacturing network flow model has been investigated. In
an MDCP, a specialized node called a D-node is used to model a distillation
process that connects with a single incoming arc and several outgoing arcs.
The flow entering a D-node has to be distributed according to a pre-specified
ratio associated with each of its outgoing arcs. This proportional relationship
between arc flows associated with each D-node complicates the problem and
makes the MDCP more difficult to solve than a conventional minimum cost
network flow problem. A network simplex algorithm for an uncapacitated
MDCP has been outlined in the literature. However, its detailed graphical
procedures including the operations to obtain an initial basic feasible solution,
to calculate or update the dual variables, and to pivot flows have never been
reported. In this paper, we resolve these issues and propose a modified network
simplex algorithm including detailed graphical operations in each elementary
procedure. Our method not only deals with a capacitated MDCP, but also
offers more theoretical insights into the mathematical properties of an MDCP.

1. Introduction. The minimum cost flow problem is a specialized linear program-
ming problem with network structure which seeks an optimal flow assignment over
a network satisfying the constraints of node flow balance and arc flow bounds (see
[1]). However, these constraints are too simplified to model some real cases such
as, for example, the synthesis and distillation of products in some manufactur-
ing processes. For this purpose, Fang and Qi [8] proposed a generalized network
model called the manufacturing network flow (MNF). The MNF considers three
specialized nodes: I-nodes, C-nodes, and D-nodes, to model the nodes of inven-
tory, synthesis (combination), and distillation (decomposition), in addition to the
conventional nodes: S-nodes, T-nodes, and O-nodes, which serve as sources, sinks,
and transhipment nodes, respectively. Fang and Qi [8] also defined a minimum
distribution cost problem (MDCP) for a specialized MNF model referred to as the
distribution network which contains both D-nodes and conventional nodes. A D-
node represents a distillation process and only connects with a single incoming arc

2000 Mathematics Subject Classification. Primary: 90B10, 05C85; Secondary: 05C21.
Key words and phrases. network optimization, manufacturing network, distribution network,

minimum distribution cost flow problem, network simplex algorithm.
I-Lin Wang was partially supported by the National Science Council of Taiwan under Grant

NSC95-2221-E-006-268.

929

http://dx.doi.org/10.3934/jimo.2009.5.929

930 I-LIN WANG AND SHIOU-JIE LIN

M

T1

T2

T3

[0.2]

[0.8]

()object,cost,capacity

[]material composition percentage

()A,3,30

()A,4,40

()A,2,40

()A,5,50

()A,3,30

()B,3,20

()C,3,30

()B,2,20

()C,4,30

()B,3,40

()B,4,10

()C,3,20

()B,4,50

()C,3,30

()A,1,20

()A,5,50

d i i= the demand of T

d1=10

d2=20

d3=20

[0.2]

[0.8]

()A,5,70

Figure 1. An MDCP example in a supply chain network

and several outgoing arcs. The flows passing through a D-node have to satisfy the
flow distillation constraint. This constraint requires the flows entering a D-node to
be distributed to each of its outgoing arcs called distillation arcs, according to a
pre-specified ratio associated with each outgoing arc. For each D-node i with enter-
ing flow xi∗i on its incoming arc (i∗, i), the flow distillation constraint specifies the
flow on its distillation arc (i, j) to be xij = kijxi∗i where kij is a constant between
0 and 1 and

∑
(i,j) kij = 1.

The MDCP can appear often in part of a supply chain network. Take Figure
1 as a reverse logistics network example. A recycled product collecting site M
distributes a recycled product A which then will be decomposed (or distilled) into
materials B and C in two different recycle plants (half-circled nodes), and finally
transported to landfills T1, T2 , and T3. In this example, each recycle plant is a
D-node; M is the S-node; T1, T2, and T3 are the T-nodes; and all the other nodes
are O-nodes. Suppose that each recycle plant can decompose one unit of A into 0.2
unit of B and 0.8 unit of C. Each arc in the reverse logistics network in Figure 1
represents some operation (e.g. transportation) associated with a unit cost as well
as a capacity constraint. The MDCP in Figure 1 seeks the minimum possible total
cost to satisfy the demand requirements of landfills T1, T2, and T3.

At first glance, the MDCP seems similar to the generalized network flow problem
where the flow along an arc (i, j) may lose or gain based on a gain factor µij , defined
as the ratio of the flow arriving at the head node j to the flow leaving from the
tail node i. In fact, the generalized flow problem is a special case of the MDCP
model. Take Figure 2(a) as an example. For each arc (i, j) with loss of flows (i.e.
µij < 1), one may convert it to an MDCP model by adding a dummy sink arc (i, j′)
and a D-node α where the flow distillation factors kαj and kαj′ can be derived from
µij . Similarly, one may also convert each arc with the gain of flows to an MNF
model by adding a dummy source arc and a C-node (see Figure 2(b) for details).
Besides the generalized flow problem, Cohen and Megiddo [6] also discussed a class
of parametric flow problems in which the fixed ratio flow problem is similar to the

A NETWORK SIMPLEX ALGORITHM FOR MDCP 931

i ij j

i

j'

j i
j

i'

α β

0.8

0.2

0.8

0.2

α: D-node β: C-node

(a) flow with loss (b) flow with gain

Figure 2. Converting a generalized flow to the MNF model

MDCP. In particular, the fixed-ratio flow problems have special constraints which
are similar to the distillation constraints of the MDCP. Nevertheless, the result in
[6] does not help much because of the following two reasons: First, the fixed ratio
flow problem can be solved in polynomial time only when the number of those
special constraints is a constant, which is more restrictive than MDCP; Second,
Cohen and Megiddo [6] only showed the existence of a strongly polynomial algorithm
through a sequence of reduction from other problems, rather than providing its
detailed operations. Therefore, MDCP is more general and difficult than both the
generalized flow problem and the fixed ratio flow problem in the literature.

Although MDCP was defined by Fang and Qi [8], similar problems have been
studied by Koene [16], Chen and Engquist [5], and Chang et al. [4] in 1980s. In par-
ticular, the pure processing network introduced by Koene [16] also contains nodes of
refining, transportation, and blending processes, and is the same as the manufactur-
ing network here. Koene [16] showed that any given LP problem can be transformed
to a pure processing network problem, and thus can be solved by his specialized
primal algorithms. Chen and Engquist [5] proposed basis partitioning techniques
in their primal simplex algorithm that used specialized network data structure for
the network portion of the problem while treating the other non-network portion as
either side variables or constraints. Chang et al. [4] further improved the practical
efficiency for the algorithms by Chen and Engquist [5]. Although these previous
works also focused on solving MDCPs, their solution methods still involve more alge-
braic operations, which are very different from the graphical operations proposed in
this paper. Recently, Lu et al. [17] studied the generalized MDCP, where

∑
(i,j) kij

for all arcs emanating from a D-node i may not necessarily equal to 1. They pro-
posed modified network simplex algorithms to deal with min-cost flow problems on
a generalized processing network, which has also been previously investigated by
Koene [16].

The flow distillation constraints associated with each D-node complicate the
problem and make the MDCP harder than the conventional minimum cost network
flow problem. Although Fang and Qi [8] proposed a network simplex algorithm
for solving the MDCP, their method is, however, not complete in the sense that
it only describes the algebraic structure for a basis. Their proposal lacks details
for the graphical operations such as obtaining the initial solution, and the pivoting

932 I-LIN WANG AND SHIOU-JIE LIN

and updating procedures for both the arc flows and node potentials. This paper re-
solves these issues and proposes a network simplex algorithm with detailed graphical
operations for solving an MDCP.

In addition to the MDCP, Fang and Qi [8] also introduced a max-flow prob-
lem for a distribution network, but they did not propose any method to solve the
problem. Sheu et al. [19] proposed a multi-labelling method to solve this problem
by adopting the concept of the augmenting path method [9] and the Depth-First
Search algorithm (DFS) which tries every augmenting subgraph that goes to the
sink or source and satisfies the flow distillation constraints. After finding such an
augmenting subgraph, the algorithm then identifies decomposable components in
an augmenting subgraph where the flow inside each component can be represented
by a single variable. The flow can be calculated by the flow balance constraints for
all nodes that joint different components. Although this method is straightforward,
its complexity is shown to be non-polynomial.

Wang and Lin [21] proposed compacting rules and a polynomial-time compacting
algorithm which can serve as a preprocessing procedure to simplify the MDCP
problem structure. Specifically, a group of connected D-nodes can be shrunk into a
single D-node. Any transhipment O-node with single incoming and outgoing arcs
can be transformed into a single arc. Capacities on arcs connecting with a D-node
can be unified using the same standards by its flow distillation constraints. After
conducting their polynomial-time compacting procedures, the original network will
be compacted to an equivalent one of smaller size.

Wang and Yang [22] solved three specialized uncapacitated MDCPs: UMDCP1,
UMDCP2, and UMDCP3 based on Dijkstra’s algorithm [7]. Other network com-
pacting rules which unify the effects of arc costs have also been proposed by the same
author. Although two algorithms modified from the Dijkstra’s algorithm have been
designed to solve UMDCP1 and UMDCP2, they can not efficiently solve UMDCP3.

A multicommodity MNF model of σ + 1 commodities was investigated by Mo et
al. [18], in which there are σ + 1 layers with each layer corresponding to a network
of the same commodity with inter-layer arcs connecting C-nodes or D-nodes. Their
model is more restrictive and simplified in the sense that: First, it is assumed that
there is only one kind of D-node to decompose commodity 0 into η commodities
and one kind of C-node to combine commodity σ from λ commodities; Second,
the distillation factor k associated with each D-node (or C-node) is assumed to be
identical (i.e. k = 1/η for a D-node, or k = 1/λ for a C-node). Moreover, the
elementary procedures in their proposed network simplex algorithm are still pure
algebraic rather than graphical operations.

Among all the related literatures, the network-simplex-based solution method by
Venkateshan et al. [20] discussed more graphical data structures and operations for
solving min-cost MNF problems. Their works are similar to this paper, but their
algorithm and notations were not clearly presented. On the other hand, we give
more detailed and clear graphical illustration on the theoretical characteristics and
complexity for each step of our network simplex algorithm.

In short, several specialized MDCPs have been solved in the literature, yet their
problems are more restrictive (e.g. [18], [21], [22], [19]) or lack graphical operations
(e.g. [16], [5], [4], [8], [18]). Since a network simplex algorithm should contain more
graphical operations than pure algebraic operations like the conventional simplex
algorithm, we propose here in this paper the detailed graphical operations for each
elementary procedure in a network simplex algorithm for solving the MDCP. Our

A NETWORK SIMPLEX ALGORITHM FOR MDCP 933

Figure 3. S-node, T-node, O-node and D-node

work provides a more efficient graphical implementation and more insights into the
solution structures. The techniques developed in this paper can also be used to
solve the problems in [19] and [22].

The rest of this paper is organized as follows: Section 2 introduces definitions
and notations, presents a model transformation for easier illustration, defines a
basic feasible graph, and provides optimality conditions for our network simplex
algorithm. Detailed procedures of our network simplex algorithm are illustrated in
Section 3. Finally, Section 4 summarizes and concludes the paper.

2. Preliminaries.

2.1. Notations and model transformation. Let G = (N, A) be a directed sim-
ple graph with node set N and arc set A. For each arc (i, j) ∈ A, we associate it
with a unit flow cost cij and a flow capacity uij where the arc flow xij ∈ [0, uij].
For each node i ∈ N , we define the set of nodes connecting to and from it as
E(i) := {j ∈ N : (j, i) ∈ A} and L(i) := {j ∈ N : (i, j) ∈ A}, respectively. There
are four kinds of nodes (see Figure 3): S-nodes, T-nodes, O-nodes, and D-nodes,
and they are denoted by NS , NT , NO, and ND, respectively. An S-node is a source
node connected only by outgoing arcs. A T-node denotes a sink node connected
only by incoming arcs. An O-node represents a transshipment node connected with
both incoming and outgoing arcs. Usually, an S-node is a supply node, a T-node is
a demand node, and an O-node is for transshipment. We refer to these three types
of nodes as conventional nodes since they only have to satisfy the flow balance
constraints. A D-node connects with one incoming arc and at least two outgoing
arcs. For each node i ∈ ND with incoming arc (i∗, i), the flow distillation constraint
specifies xij = kijxi∗i for the flow on its distillation arc (i, j). Furthermore, we as-
sume

∑
j∈L(i) kij = 1 in order to satisfy the flow balance constraint. Without loss

of generality, we assume all the networks in this paper to have already been com-
pacted using the rules and algorithms by Wang and Lin [21] and Wang and Yang
[22]. Also, we assume that the MDCP problem contains a finite optimal solution.

Shipping flows from several S-nodes to several T-nodes through O-nodes and
D-nodes, an MDCP model proposed by Fang and Qi [8] is defined as follows:

min
∑

i∈NS

cixi +
∑

(i,j)∈A

cijxij (MDCPFQ)

s.t.
∑

j∈L(i)

xij − xi = 0 ∀i ∈ NS (1)

934 I-LIN WANG AND SHIOU-JIE LIN

xj −
∑

i∈E(j)

xij = 0 ∀j ∈ NT (2)

∑

j∈L(i)

xij − xi∗i = 0 ∀i ∈ ND, (i∗, i) ∈ A (3)

xij − kijxi∗i = 0 ∀i ∈ ND, (i∗, i) ∈ A, (i, j) ∈ A (4)

xi ≤ ui ∀i ∈ NS (5)

0 ≤xij ≤ uij ∀(i, j) ∈ A (6)

where ui for each i ∈ NS represents the maximum possible flow that a source node
i receives for shipping out, dj for each node j ∈ NT denotes the minimum amount
of flow that a sink node has to receive, and

∑
i∈NS

ui ≥
∑

j∈NT
dj .

Although this formulation is straightforward, it does not follow the conventional
notations as they usually appear in the literature of network optimization. For
example, xi for each i ∈ NS and xj for each j ∈ NT can not be treated as arc
flows since the incoming arc for each S-node and the outgoing arc for each T-
node have not been defined in the model. Moreover, each node in a conventional
minimum cost network flow model usually has an exact amount of supply or demand,
rather than a lower bound (e.g. T-nodes) or upper bound (e.g. S-nodes) as defined
in MDCPFQ. To avoid confusion caused by different notations, we provide the
following modifications for MDCPFQ, based on the modeling techniques proposed
in [13, 11, 10, 12, 3, 2, 14, 1, 15]:

1. Add a dummy source node s, an arc (s, i) with csi = 0, xsi = xi, and usi = ui

for each S-node i. Assign
∑

i∈NS
ui and 0 units of supply for s and each node

i ∈ NS , respectively.
2. Add a dummy sink node t, an arc (j, t) with cjt = 0, xjt = xj − dj , and

ujt = ∞ for each T-node j. Assign
∑

i∈NS
ui −

∑
j∈NT

dj and dj units of
demands for t and each node j ∈ NT , respectively.

3. Add the arc (s, t) with cst = 0 and ust = ∞.

Our modification successfully transforms MDCPFQ into a formulation similar
to the conventional minimum cost network flow model where each node has an
exact amount of supply or demand and each flow variable is associated with an
arc containing both a head node and a tail node. In particular, as illustrated
in Figure 4, each S-node and T-node, as well as the dummy nodes s and t, all
have a fixed amount of net flow. The modified formulation thus contains only
two types of nodes: (1) the D-nodes, and (2) the other nodes denoted as the Ô-
nodes, including the original S-nodes, T-nodes, O-nodes, and the dummy nodes s
and t. Let NÔ = NS ∪ NO ∪ NT ∪ {s, t}, then we update N = NÔ ∪ ND and
A = A ∪ {(s, t)} ∪ {(s, i) : i ∈ NS} ∪ {(j, t) : j ∈ NT }. The new MDCP formulation
after our transformation can be described as follows:

A NETWORK SIMPLEX ALGORITHM FOR MDCP 935

s

i

u
i

u
i

i

[-]
i

i

S

[]-d
i

t

Figure 4. Transforming the MDCPFQ to the conventional mini-
mum cost network flow model

min
∑

(i,j)∈A

cijxij (MDCP)

s.t. xst +
∑

i∈NS

xsi =
∑

i∈NS

ui for s (7)

xsi −
∑

j∈L(i)

xij = 0 ∀i ∈ NS (8)

∑

j∈L(i)

xij −
∑

j∈E(i)

xij = 0 ∀i ∈ NO (9)

xjt −
∑

i∈E(j)

xij = −dj ∀j ∈ NT (10)

−xst −
∑

j∈NT

xjt =
∑

j∈NT

dj −
∑

i∈NS

ui for t (11)

∑

j∈L(i)

xij −
∑

j∈E(i)

xij = 0 ∀j ∈ ND (12)

kijxi∗i − xij = 0 ∀i ∈ ND, (i∗, i) ∈ A, (i, j) ∈ A (13)

0 ≤ xij ≤ uij ∀(i, j) ∈ A (14)

where equations (7) to (12) define the flow balance for each node in N , equation
(13) is the flow distillation constraint associated with each D-node, and equation
(14) defines the arc flow bounds. Note that we assume

∑
j∈L(i) kij = 1 which

means that equation (12) can be derived from equation (13) and thus equation
(12) is removable. This new formulation has several advantages. First, it treats

936 I-LIN WANG AND SHIOU-JIE LIN

the MDCP as a side-constrained minimum cost network flow problem where only
a new set of flow distillation constraints (i.e. equations (13)) are added in addition
to the conventional flow balance and bound constraints; Second, the basic graph
corresponding to the basis is connected. Furthermore, the connectivity property of
the basic graph is helpful in the development of our network simplex algorithm.

2.2. Basic feasible graph. In a conventional minimum cost network flow prob-
lem, a basis corresponds to a spanning tree so that the network simplex algorithm
can easily operate from one spanning tree to another. Here in MDCP, the basis
corresponding to a basic feasible flow x constitutes a subgraph GB(x) composed
by a spanning tree and some distillation arcs. Since the flow balance constraints
in MDCP are the same as the conventional minimum cost network flow problem,
GB(x) at least contains a spanning tree of n−1 basic arcs derivable from equations
(7) to (12). Suppose each D-node i contains qi distillation arcs, q =

∑
i∈ND

qi,
and that there are a total of p D-nodes. Since equation (12) can be derived from
equation (13), we can remove equation (12) and then the rank of the constraints
(7) to (13) equals to n + q − p − 1 since there are a total of p D-nodes. The basic
feasible graph for an MDCP has the following properties:

Lemma 2.1. Let x be a basic feasible solution of an MDCP and GB(x) be the basic
feasible graph corresponding to x, where |N | = n, |ND| = p, |L(i)| = qi for each
i ∈ ND and q =

∑
i∈ND

qi. The basic graph has the following properties:
(i) The number of basic arcs is n + q − p− 1.
(ii) Any cycle of GB(x) includes at least one D-node.
(iii) GB(x) is connected.
(iv) Each D-node i is connected with qi or qi + 1 basic arcs.
(v) After removing qi − 1 basic arcs for each D-node i, GB(x) can be reduced to a
spanning tree.

Proof. (i) Trivial.
(ii) See [8].
(iii) Our MDCP contains the same flow balance constraints corresponding to a
connected spanning tree, as in the conventional minimum cost flow problem. Thus
the basic graph of our MDCP is connected.
(iv) See [8].
(v) The proof is modified from [8]. By (iii), we know that any cycle in GB(x) passes
at least one D-node. Since each D-node i is connected by at least qi arcs by (iv),
and if we remove qi − 1 basic arcs for each D-node i (i.e., totally removing q − p
arcs) from GB(x), then the remaining basic graph contains n − 1 basic arcs and
remains connected without any cycle which corresponds to a spanning tree.

Although our Lemma 2.1 seems similar to the properties proposed by Fang and
Qi [8], they are not identical in the following sense: First, we generalized their
results to deal with a capacitated MDCP whereas their results are only applicable
for an uncapacitated MDCP; Second, we suggest a more specific way (property
(v) in Lemma 2.1) to describe the relationship between GB(x) and its induced
spanning tree, which helps us to design the optimality conditions in Section 2.3 and
our graphical network simplex algorithm in Section 3.

A NETWORK SIMPLEX ALGORITHM FOR MDCP 937

2.3. Dual variables and optimality conditions. Let πi and π̃i be dual variables
associated with the flow balance constraint for each node i ∈ NÔ (equation (7)
to (11)) and i ∈ ND (equation (12)), respectively. Let vij denote dual variable
associated with the flow distillation constraint (equation (13)) for each distillation
arc (i, j). The constraints of the dual problem of an MDCP can be formulated as
follows:

πi − πj ≤ cij ∀i, j ∈ NÔ (15)

π̃i − vij − πj ≤ cij ∀i ∈ ND, j ∈ NÔ (16)

πi − π̃j +
∑

l∈L(j)

kjlvjl ≤ cij ∀j ∈ ND, i ∈ E(j) (17)

For each distillation arc (j, l) leaving D-node j, define ρjl = π̃j − vjl and πj =∑
l∈L(j) kjlρjl . Since

∑
l∈L(j) kjl = 1, we will have π̃j −

∑
l∈L(j) kjlvjl =

∑
l∈L(j)

kjl(π̃j − vjl) =
∑

l∈L(j) kjlρjl = πj . Equation (15) to (17) can be rewritten as

πi − πj ≤ cij ∀i ∈ NÔ, j ∈ N (18)

ρij − πj ≤ cij ∀i ∈ ND, j ∈ NÔ (19)

We apply the upper bound technique for linear programming to solve a capac-
itated MDCP. Specifically, when xij = uij for an arc (i, j), one may consider its
orientation to be reversed. This also means that the check on its dual feasibility
constraint has to be conducted conversely (e.g. replace the ≤ with ≥ in equations
(18) and (19)). The upper bound technique can also be implemented in the original
model proposed by Fang and Qi [8], but their basic graph can not be guaranteed to
be connected, which complicates the procedure to traverse along arcs for checking
the dual feasibility. On the other hand, the basic graph is shown to be connected
in our model by Lemma 2.1(iii).

Let B, L, and U be the set of basic arcs, non-basic arcs at lower bound, and
non-basic arcs at upper bound, respectively. Thus the set of all arcs A = B∪L∪U .
The dual optimality conditions are then as follows:

1. For each arc (i, j) ∈ B,

πi − πj = cij ∀i ∈ NÔ, j ∈ N (20)

ρij − πj = cij ∀i ∈ ND, j ∈ NÔ (21)

2. For each arc (i, j) ∈ L,

πi − πj ≤ cij ∀i ∈ NÔ, j ∈ N (22)

ρij − πj ≤ cij ∀i ∈ ND, j ∈ NÔ (23)

3. For each arc (i, j) ∈ U ,

πi − πj ≥ cij ∀i ∈ NÔ, j ∈ N (24)

ρij − πj ≥ cij ∀i ∈ ND, j ∈ NÔ (25)

3. Network Simplex algorithm. The network simplex algorithm is a specialized
simplex algorithm designed specifically for solving network-type linear programming
problems. The conventional network simplex algorithm is designed for minimum
cost network flow problem and exploits graphical operations in order to efficiently
calculate the basic feasible solutions. However, it cannot deal with the distillation

938 I-LIN WANG AND SHIOU-JIE LIN

constraints of an MDCP. On the other hand, the network simplex algorithm pro-
posed by Fang and Qi [8] for an MDCP is not complete in the sense that many steps
in their algorithm are only algebraic operations. To fully exploit the advantage of
graphical operations, we propose a network simplex algorithm including technical
details in such steps as to allow us to obtain the initial basic feasible solutions, to
pivot flows along basic feasible graphs, and to update dual basic solutions for solving
a capacitated MDCP. Without loss of generality, we assume that our MDCP always
has a finite optimal solution and that the degeneracy is resolved using anti-cycling
techniques. Our network simplex algorithm contains the following steps:

Step 0: Start with an initial basic feasible flow on a basic feasible graph GB(x).
Step 1: Calculate dual basic solutions for GB(x).
Step 2: Check the dual feasibility conditions (equation (22) to (25)) for each arc in

L∪U . If no arcs violate the optimality conditions, then the flow x is optimal
and the algorithm terminates.
Otherwise, select a violating arc (k, l) as the entering arc to the basis and
continue Step 3.

Step 3: Conduct flow pivoting operations and determine the leaving arc (v, z).
Step 4: Update dual variables, and then return to Step 2 for the next iteration.

Our algorithm exploits several novel basis partitioning techniques which decom-
pose a basic graph into components so that arc flows as well as node potentials
can be efficiently calculated and updated. Detailed operations for each step are
explained in the next sections.

3.1. Obtaining an initial basic feasible flow. Let M be a very large number.
We present the following procedure based on the Big-M method to compute an
initial basic feasible flow:

Step 1: For each i ∈ NS , include arc (s, i) into the basis with xsi := 0. Also
include arc (s, t) into the basis with xst :=

∑
i∈NS

ui −
∑

i∈NT
dj .

Step 2: For each i ∈ NÔ, add artificial arcs (s, i) to be a basic arc with usi := M ,
csi := M , and xsi := 0.

Step 3: For each i ∈ NT , add artificial arcs (s, i) to be a basic arc with usi := M ,
csi := M , and xsi := di.

Step 4: For each i ∈ ND, include each distillation arc (i, j) where j ∈ L(i) to be a
basic arc with xij := 0.

In particular, Step 1 through Step 3 identify n − p − 1 basic arcs, and Step 4
identifies another basic arcs. The flow assignments are feasible since all the supply
and demand are satisfied. Furthermore, basic dual variables can be calculated by
setting πs := 0, πi := −csi for each i ∈ NÔ, ρij := πj + cij for each distillation arc
(i, j), and πi :=

∑
j∈L(i) kijρij for each i ∈ ND. This procedure takes O(n + q − p)

time.

3.2. Calculating basic dual solutions. Fang and Qi [8] outlined this procedure
without detailed graphical implementation. In the present paper we propose a basis
partitioning technique that decomposes the basic graph into p+1 basic components,
in which each basic component is a tree and contains at least one D-node or one
distillation arc. We show that all dual variables on the same basic component can

A NETWORK SIMPLEX ALGORITHM FOR MDCP 939

i

j

j

i

i

Figure 5. Detaching the distillation from a D-node

be expressed using a representative dual variable (e.g. the π associated with some
node in that basic component) due to its tree structure, so that we can use the p+1
representative dual variables to derive all the n+q dual variables. A system of p+1
linear equations, composed by πi = ς for some node i ∈ N or ραβ = ς for some
distillation arc (α, β) with a constant ς, as well as p equations πi =

∑
j∈L(i) kijρij

of for each i ∈ ND, can be used to solve the p+1 representative dual variables, and
then to derive all the n + q dual variables.

3.2.1. Decomposing the Basic Graph into Basic Components. When solving basic
dual variables for a minimum cost network flow problem, the network simplex al-
gorithm starts from any node i, sets πi to be a fixed value ς (e.g. ς = 0), and
then calculates other dual variables by tracing basic arcs along the basic tree arcs.
Here in MDCP, such a tracing operation is not trivial when a D-node is encoun-
tered. Specifically, when starting from a node i ∈ N one may trace along basic arcs
and calculate other dual variables π or ρ using equations (20) and (21). However,
when a D-node i is encountered, the tracing has to be stopped since the qi + 1 dual
variables in the equation πi =

∑
j∈L(i) kijρij associated with a D-node i cannot be

calculated using a single equation (i.e. equation (20) or (21)). A search algorithm
such as the Depth-First Search (DFS) or Breadth-First-Search (BFS) can be used
to trace the basic arcs and calculate dual variables using equation (20) and (21), as
long as we do not crossover a D-node. Once the search algorithm backtracks to its
starting node it can start from any unvisited node and conduct the same operations
until all the nodes in N have been visited. That is to say , D-nodes can be viewed
as boundary nodes for the search algorithm.

To have a better illustration for this operation, we detach each distillation arc
(i, j) outgoing from each D-node i, and replace its tail node by a pseudo node ij
referred to as a side-node (the squared nodes in Figure 5). A new dual variable
πij = ρij is assigned to the side-node ij for recording dual variable ρij associated
with the distillation arc (i, j). Thus equation (21) becomes πij− πj = cij for each
distillation basic arc (i, j) and has a form similar to equation (20). Now we only
need to consider dual variables π associated with each node in N and each side-node.

The detachment procedure disconnects each D-node i and all the nodes it em-
anates to. By lemma 2.1(iv), we know that each D-node i is connected by either qi

or qi+1 basic arcs. Lemma 2.1(v) also suggests that the disconnection of qi−1 basic
arcs for each D-node i in GB(x) reduces the GB(x) to a spanning tree, denoted as
T (x). Therefore, the disconnection of qi basic arcs for each D-node i in GB(x) will
disconnect one more basic arc for each D-node i in the spanning tree T (x). Since

940 I-LIN WANG AND SHIOU-JIE LIN

4
7

4
8

4
6

5
6

5
9

BC
2

BC
1

BC
3

BC
1

BC
3

BC
2

Figure 6. An example of basic components

there are a total of p D-nodes, the detachment thus disconnects p basic arcs from
T (x) and forms a forest of p + 1 trees, where each tree is called a basic component.
Note that each of these p+1 basic components contains at least one D-node or one
side-node.

Since each basic component is a tree, one may arbitrarily choose a node inside a
basic component and use its dual variable as a base to derive dual variables along the
basic tree arcs for all the other nodes inside the same basic component. Specifically,
inside each basic component, the search algorithm starts from a node, sets its dual
variable as a base for that basic component, and traverses along basic arcs until
it encounters a boundary node (i.e. a D-node or a side-node), then it stops and
retreats to visit other unvisited nodes. Whenever a node is visited for the first time,
its associated dual variable can be calculated by equation (20) or (21).

Figure 6(b) illustrates how a basic graph containing two D-nodes in Figure 6(a)
is decomposed. In this example, three components (BC1, BC2, and BC3) can be
identified, and three independent variables (π1, π6, and π3) can be used to derive
all dual variables through the basic tree arcs.

For a D-node i connecting with qi + 1 basic arcs in GB(x), the detachment will
group the D-node i into the basic component containing its entering node i∗ (i.e.
i∗ ∈ E(i)), while all of its side-nodes belong to the other basic components. On the
other hand, for a D-node i connecting with qi basic arcs in GB(x), the detachment
will create a basic component composed by an isolated D-node or side-node. For
example, Figure 7(a) shows a case where the incoming arc (i∗, i) for the D-node i is
non-basic, and Figure 7(b) gives another example where a distillation arc (i, j) for
the D-node i is non-basic.

Each basic feasible graph can be uniquely decomposed using our basis partition-
ing technique. The following are some properties of the basic components.

Lemma 3.1. (i) The number of basic components is p + 1.
(ii) Each basic component is a tree.
(iii) The number of components containing at least one Ô-node (i.e. not an isolated

A NETWORK SIMPLEX ALGORITHM FOR MDCP 941

i j

()a ()b

Figure 7. Examples of basic components composed by an isolated node

D-node or side-node) is at most min{p + 1, n − p}. That is to say, the number of
D-nodes whose adjacent arcs are all basic is at most min{p, n− p− 1}.
Proof. (i) and (ii) have been explained in previous paragraphs. We give the proof
for (iii) as follows:
(iii) If p + 1 ≤ n− p, we may distribute at least one Ô-node to each of these p + 1
basic components, so that the maximum number of basic components containing
at least one Ô-node is p + 1. On the other hand, when p + 1 > n − p, we may
at most have n − p among these p + 1 basic components that contain at least one
Ô-node. Therefore, there are at most min{p+1, n−p} basic components containing
at least one Ô-node. Since these basic components must be formed by detaching
the distillation arcs from those D-nodes whose adjacent arcs are all basic, there are
at most min{p, n− p− 1} such D-nodes.

The following are the steps to decompose a basic graph into several basic com-
ponents and assign a single variable to express each dual variable in the same
component as follows:

Step 0: Given a basic feasible graph GB(x) corresponding to a basic feasible flow
x. Construct an augmented basic graph G

′
B(x) by first duplicating all the

nodes and arcs from GB(x). Then, for each distillation arc (i, j) in G
′
B(x),

detach its tail from the D-node i, and add a new side-node ij vas its new tail
node whose dual variable πij = ρij .

Step 1: Initialize p + 1 node sets (BCi := ∅, i = 1, .., p + 1); unmark each node
(i.e. each node in N and each side-node) in G

′
B(x); set k = 1.

Step 2: Select an unmarked node r from G
′
B(x), put it into BCk, and set πr = tk

Step 3: Starting from node r, conduct a search algorithm to traverse along arcs
in G

′
B(x). When the search algorithm traverses from a marked node i to

an unmarked node j along a basic arc (i, j) (or (j, i)) in G
′
B(x), we set

πj = πi − cij (or πj = πi + cij). When the search algorithm terminates, all
dual variables in this component have been expressed by tk. Set k = k + 1;

Step 4: Repeat Step 2 and Step 3 until all the nodes in G
′
B(x) are marked.

942 I-LIN WANG AND SHIOU-JIE LIN

Note that the augmented basic graph G
′
B(x) contains n+q−p−1 basic arcs and

n + q nodes. The search algorithm scans each arc and node exactly once in Step 3
and results in a total θ(n + q) time for this procedure.

3.2.2. Solving a Smaller System of Linear Equations. After decomposing the p + 1
basic components, dual variable associated with each node inside the basic compo-
nent has been expressed using the representative variable ti. Thus, there are a total
of p + 1 representative dual variables. Similar to the conventional network simplex
algorithm for the minimum cost flow problem where one can arbitrarily set a dual
variable to a fixed value and then derive all other dual variables with respect to
that dual variable via basic arcs, here we can also arbitrarily select a dual variable
as a base and compute all other p dual variables accordingly. For example, setting
π1 = t1 = 0, we will have p representative variables (ti : i = 2, ..., p + 1) and a
system of p linear equations (πi =

∑
j∈L(i) kijρij : i ∈ ND).

Take Figure 6 as an example. Using π1 = 0 and the relations between dual
variables as defined in Figure 6(b), the equations associated with flow distillation
constraints: π4 = 0.4ρ46 +0.3ρ47 +0.3ρ48 and π5 = 0.5ρ56 +0.5ρ59 can be expressed
using t2 and t3, and we can compute t2 = −11.286 and t3 = 0.5t2 + 8 = 2.357.

Although our basis partitioning technique requires us to solve a system of p
linear equations for calculating basic dual variables, this is already more efficient
than solving a system of n + q − p − 1 linear equations as required in the network
simplex method proposed by Fang and Qi [8]. In fact, the efficiency of our method
can be improved further, if a better ordering in the sequence of components to be
solved can be identified. For example, in Figure 6(b), D-node 4 is the boundary
node for two components (BC1 and BC2), and D-node 5 is the boundary node
for three components (BC1, BC2, and BC3). Setting t3 = 0 will have to solve a
2 × 2 system of linear equations, whereas setting t1 = 0 or t2 = 0 will make the
remaining system of linear equations become a triangular form, which can be solved
more efficiently.

To speed up this procedure, we may reduce the number of linear equations re-
quired to be solved. We first identify the following three types of basic components:
(1) a basic component composed of an isolated D-node or side-node (e.g. Figure
7), (2) a basic component that contains exactly one D-node, some Ô-nodes but no
side-nodes (e.g. the BC3 in Figure 6), and (3) a basic component that contains no
D-node, some Ô-nodes, and some side-nodes whose associated distillation arcs are
emanating from the same D-node in the adjacent basic component. We call these
three types of basic components leaf basic components since their dual variables
only depend on a single dual variable without interacting with others. Thus, dual
variables inside a leaf basic component can first be left aside, and then later be
derived from dual variables of other non-leaf basic components. By Lemma 3.1(iii),
we know that there are at most min{p+1, n−p} basic components that are not leaf
basic components. Thus, we may at most solve a system of min{p+1, n− p} linear
equations which takes O(min{p3, (n − p)3}) time. Then, the calculation on dual
variables in the remaining leaf basic components takes O(p + q) time. In summary,
the procedure to calculate all dual variables takes O(min{p3, (n−p)3}+n+q) time.

3.3. Finding an entering arc and pivoting flows. After calculating basic dual
variables, any arc in L ∪ U that violates the dual feasibility conditions (equation
(22) to (25)) is eligible to enter the basis. A pivoting graph, obtained by adding
the entering arc to the basic graph, contains more than one cycle since the original

A NETWORK SIMPLEX ALGORITHM FOR MDCP 943

47

59

entering arc

basic arc

orientation

Figure 8. Pivoting flow inside a basic component

basic graph already contains cycles induced by the D-nodes. Thus the flow pivoting
operations become more difficult and complicated. Similar to the computation
on dual variables, the difficulty of flow pivoting lies in the design of an efficient
procedure to pivot flows graphically, rather than algebraically. To this end, we
apply the basis partitioning technique used in calculating dual variables to design
efficient graphical flow pivoting operations. There are two types of entering arcs:
either the entering arc connects two nodes of the same component or it does not.
We provide different procedures to conduct flow pivoting for these two cases.

3.3.1. The Entering Arc Connecting Nodes of the Same Basic Component. Since
each basic component is a tree, adding the non-basic entering arc (k, l) in this case
will induce a unique cycle inside the same basic component, as shown in Figure 8.
In addition, nodes k, l, and other nodes on the induced cycle have to be Ô-nodes,
since all the D-nodes will become leaf nodes in GB(x) (and thus D-nodes can not
become internal nodes). The flow pivoting operations in this case are made up of
the following steps:

Step 1: Add the non-basic entering arc (k, l) into the BC containing nodes k and
l.

Step 2: Identify the unique cycle induced by adding (k, l) to the BC containing
nodes k and l.

Step 3: If (k, l) ∈ L, we ship the maximum flow along the orientation of (k, l) in
the induced cycle, Update flows for the arcs in the induced cycle, and then
determine the leaving arc (v, z) that first achieves its flow bound.
Otherwise (i.e. (k, l) ∈ U), we ship the maximum flow along the opposite
orientation of (k, l) in the induced cycle, update flows for the arcs in the
induced cycle, and then determine the leaving arc (v, z) that first achieves its
flow bound.

This procedure takes O(n + q) time.

944 I-LIN WANG AND SHIOU-JIE LIN

3.3.2. The Entering Arc Connecting Nodes of Different Basic Components. Three
types of end nodes for the entering arc (k, l) are possible in this case: (1) k ∈
NÔ, l ∈ NÔ (2) k ∈ NÔ, l ∈ ND, and (3) k ∈ ND, l ∈ NÔ. In general, the entering
arc merges two components and reduces the number of basic components from p+1
to p. Note that in this case the entering arc induces no cycle in the newly merged
component, and thus we have to design a new graphical procedure to pivot flows.
Here we will exploit the basis partitioning techniques used for calculating basic dual
variables in Section 3.2 to compute flows in the pivoting process.

To speed up the calculation, we conduct a graph compacting process to remove
those nodes not eligible to ship flows in the pivoting graph, as well as their associated
arcs. In particular, two types of nodes are removable: (1) any Ô-node connecting
with one arc, and (2) any node inside a leaf basic component. This compacting
procedure may be repeated until all the Ô-nodes are connected with at least two
basic arcs and all the leaf basic components are removed. Since each compacting
operation removes at least one node and one basic arc, it takes a total of O(n + q)
time.

The graph compacting procedure reduces the number of components in a pivoting
graph from p to p̃. G̃ = (Ñ , Ã) denotes the remaining pivoting graph after the
compacting process. We give four properties for G̃ as follows:

Lemma 3.2. (i) Any leaf node in Ñ is either a D-node or a side node.
(ii) Any D-node i in Ñ has to be adjacent to qi + 1 arcs.
(iii) p̃ ≤ min{p, n− p}.
(iv) G̃ contains p̃ D-nodes.

Proof. (i) and (ii) are trivial since the compacting process removes all the leaf Ô-
nodes, as well as those isolated D-nodes or side-nodes. We give the proof for (iii)
and (iv) as follows:
(iii) If p + 1 ≤ n− p, then we know that p < n− p and thus p̃ ≤ p since the n− p

Ô-nodes can at most cover all the p components in the pivoting graph. On the other
hand, if p + 1 > n− p, then we know that p ≥ n− p and thus p̃ ≤ n− p since the
n− p Ô-nodes can at most cover n− p of the p components in the pivoting graph.
Therefore, p̃ ≤ min{p, n− p}.
(iv) The p̃ components have to include the merged basic components induced by
the entering arc (k, l), since the entering arc is the source of any flow change. This
means that there were p̃ + 1 basic components if we exclude the entering arc from
Ã. Since these p̃+1 basic components must be formed by detaching the distillation
arcs from the p̃ D-nodes, and these D-nodes will not be removed by (ii), so we know
Ñ contains p̃ D-nodes.

To conduct the flow pivoting operation, we have to identify the relationship of
flow changes on basic arcs with respect to the flow change on the entering arc. To
this end, we first set ∆kl = 1 (or ∆kl = −1) to represent the shipping of one unit
of flow along the entering arc (k, l) if (k, l) ∈ L (or (k, l) ∈ U), and then for each
D-node i we assign the flow change along its incoming arc to be ∆i∗i (thus we
have in total p̃ variables of ∆i∗i by Lemma 3.2(iii)). Using the flow distillation and
balance constraints, we can derive the flow change on each arc in Ã in terms of fi∗i

for each D-node i. Specifically, the flow in each distillation arc can be derived by

A NETWORK SIMPLEX ALGORITHM FOR MDCP 945

∆ij = kij∆i∗i for each D-node i. Since each component in G̃ is a tree with leaf
nodes as D-nodes or side-nodes, all the flow change entering or leaving each leaf
node can be expressed by ∆i∗i for each D-node i.

In addition, using the flow balance constraints associated with each internal node,
we can conduct a search algorithm inside a component to traverse from leaf nodes to
all other internal nodes and derive the flow change entering or leaving each internal
node in terms of ∆i∗i for each D-node i. Thus, for each component in G̃, we may
arbitrarily select an internal node as its root node and use the flow balance equation
associated with each root node to construct a system of p̃ linear equations. Note
that this system of p̃ linear equations has a rank equal to p̃ − 1 since the flow
balance constraints have to be satisfied for each node and for the entire system
itself. Thus, one of the p̃ flow balance equations can be removed. On the other
hand, by considering the additional equation ∆kl = 1 (or ∆kl = −1, depending on
whether (k, l) ∈ L or (k, l) ∈ U) representing the unit flow change for the entering
arc (k, l), a system of p̃ linear equations can be constructed to solve the p̃ variables
of ∆i∗i for each D-node i, and then all the relative flow changes on each arc in Ã
can be derived with respect to ∆kl.

Obtaining the relative flow change for each arc in Ã, we can conduct a minimum
ratio test to calculate θvz = min(i,j)∈Ã,∆ij 6=0{(uij − xij)/∆ij : ∆ij > 0,−xij/∆ij :
∆ij < 0} for a leaving arc (v, z), update flows by xij = xij + θvz∆ij for each arc
(i, j) in Â with ∆ij 6= 0, and then remove (v, z) to form another basic graph for the
next iteration.

Take the pivoting graph in Figure 9(a) for example. By adding the entering arc
it merges two basic components BC1 and BC3. Setting the amount of flow changes
on arcs and to be a and b, respectively, we may derive the flow changes entering
or leaving the leaf nodes, as shown in Figure 9(b). Selecting nodes 1 and 6 to be
the root nodes in BC1 and BC2, respectively, we can derive all the flow changes
entering or leaving each internal node as shown in Figure 9(c). Two flow balance
equations, a+ b−0.3a−0.5b = 0 and −0.3a−0.4a−0.5b = 0, associated with these
root nodes can be formulated. Since these two equations depend on each other, we
replace the second equation by b = 1 since the entering arc (1, 3) ∈ L. Therefore
we can derive the flow change for each arc in the pivoting graph relative to the flow
change on the entering arc, as shown in Figure 9(d).

The procedure to pivot the flow in the case where the entering arc connects nodes
of different basic components is described as follows:

Step 1: Add the non-basic entering arc (k, l) into GB(x) to construct a pivoting
graph.

Step 2: Conduct the graph compacting procedure which repeatedly removes any
Ô-node connecting with one arc and any node inside a leaf basic component,
as well as their associated arcs in a pivoting graph, until no more such node
exists. We call the compacted graph as G̃ = (Ñ , Ã).

Step 3: For each node i ∈ ND in Ñ , we assign a flow change variable ∆i∗i for its
incoming arc (i∗, i), and then calculate ∆ij = kij∆i∗i for each distillation arc
(i, j).

Step 4: For each component in G̃, we select some Ô-node in this component as its
root node, conduct a search algorithm to traverse from leaf nodes to the root

946 I-LIN WANG AND SHIOU-JIE LIN

()a Add the entering arc (1,3) . ()b Set variables to arc (2,4) and arc (3,5).

()c Calculate all ()d G

()b=1

variables anda b

5

7

-

3

14

-

3

14

-

5

7

-

3

14

-
3

14

2

7

-
1

2

1

2

1

2

1

1

BC
1

BC
2

BC
3

BC
1

BC
2

BC
1

BC
2

BC
1

BC
2

root

Figure 9. Computing the relative flow changes in a pivoting graph

node, and then derive the flow change on any arc inside that component using
the flow balance constraints associated with each internal node.

Step 5: If (k, l) ∈ L, we solve the system of equations composed by ∆kl = 1 and
the flow balance constraints associated with p̃− 1 root nodes in Ñ to obtain
∆ij for each (i, j) ∈ Ã.
Otherwise (i.e. (k, l) ∈ U), we solve the system of equations composed by
∆kl = −1 and the flow balance constraints associated with p̃ − 1 root nodes
in Ñ to obtain ∆ij for each (i, j) ∈ Ã.

Step 6: Calculate θvz = min(i,j)∈Ã,∆ij 6=0{(uij − xij)/∆ij : ∆ij > 0,−xij/∆ij :
∆ij < 0} for a leaving arc (v, z).

Step 7: For each arc (i, j) ∈ Ã with ∆ij 6= 0, we update its flow by xij := xij +
θvz∆ij .

The compacting procedure takes O(n + q − p) time to construct G̃. Setting the
flow change variables for arcs connecting with D-nodes takes O(p̃ + q̃) time, where

A NETWORK SIMPLEX ALGORITHM FOR MDCP 947

q̃ represents the total number of distillation arcs in Ã. The search algorithm takes
O(p̃(|Ã|− p̃− q̃)) time to derive the flow changes on the other arcs in Ã, since there
are |Ã| − p̃− q̃ arcs in Ã with both end nodes to be Ô-nodes, and each flow change
has to be expressed using the p̃ variables. Solving the system of p̃ equations takes
O(p̃3) time. The min-ratio test and flow updating operations for each arc in Ã take
O(|Ã|) time. Thus the procedure to calculate flow changes in the pivoting graph
can be done in O(p̃3 + p̃|Ã| + n + q) ≤ O(min{p3 + np, (n − p)3 + n(n − p)} + q)
time, since p̃ ≤ min{p, n− p} by Lemma 3.2(iii).

Different from our basis partitioning technique, Sheu et al. [19] proposed a
different partitioning technique to calculate the flow change on each arc in a given
augmenting subgraph for solving a maximum flow problem in a distribution network.
After constructing the compacted pivoting graph G̃ = (Ñ , Ã), we can use p̆ Ô-nodes
connected with more than two arcs as the dividing nodes to divide G̃ into p̆ + 1
compatible components, where the flow change on each arc inside a component can be
expressed by a single variable. After solving the system of p̆+1 equations composed
by the flow balance equations associated with p̆ dividing nodes and ∆kl = 1 (or
∆kl = −1, depending on whether (k, l) ∈ L or (k, l) ∈ U), the flow change on each
arc in Ã can be expressed by ∆kl. Since there are at most p̆ such Ô-nodes and
p̆ = O(n − p), their technique takes O((n − p)3) time. Therefore, our technique is
at least asymptotically similar to theirs for the cases with more D-nodes. For the
cases with fewer D-nodes than Ô-nodes, our technique is asymptotically faster than
theirs.

3.4. Updating dual variables. After pivoting the flows and removing the leaving
arc, the network simplex algorithm updates dual variables for the new basic graph.
The new dual variables associated with the updated basic graph can be calculated
from scratch using the procedure proposed in Section 3.2. However, since the basic
graphs of two successive pivoting iterations share many common components, a
more efficient dual variable update scheme can take advantage of the basic graph of
the previous iteration. In this paper we propose a dual variables update procedure
that exploits the structure of the basic components in the previous procedure and
saves more computational efforts than the procedure in Section 3.2.

Let bc(i) and bc(ij) represent the index of the basic component containing the
node i ∈ N and the side-node ij , respectively. Suppose GB(x) is a basic graph
in some network simplex iteration before flow pivoting, and that the flow pivoting
procedure selects (k, l) and (v, z) to be the entering and leaving arc, respectively.
Let g = bc(k), h = bc(l), and w = bc(z). If we remove the leaving basic arc (v, z)
from GB(x), BCw will be split into two basic components: BCbc(z) and BCbc(v).
For the sake of convenience, let bc(z) = w and bc(v) = p + 2, and there are a
total of p + 2 basic components in the pivoting graph, excluding the entering and
leaving arcs. Since all the arcs in these p + 2 basic components remain basic, dual
variables still satisfy equations (20) and (21). Thus, dual variables inside each of
these p + 2 basic components will have the same amount of change, but different
basic component may have a different amount of change. Let δα record the change
for each dual variable inside BCα for α = 1, ..., p + 2. Let πold

i , ρold
ij and πnew

i ,
ρnew

ij denote dual variables associated with a node i ∈ N and a distillation arc
(i, j) ∈ A in two successive network simplex iterations, respectively. Then, πnew

i :=
πold

i + δbc(i)and ρnew
ij := ρold

ij + δbc(ij).

948 I-LIN WANG AND SHIOU-JIE LIN

Adding the non-basic entering arc (k, l) to the p+2 basic components merges BCg

and BCh into a new and larger component BCg ∪BCh in the pivoting graph. For
the sake of convenience, let BCg := BCg ∪ BChand BCh := BCp+2. This merger
integrates the variables of two components and reduces the number of components
and variables by one. Now we only need to consider p + 1 components (i.e. BCα

for α = 1, 2, ..., p + 1). Depending on the type of node k, δh can be expressed by δg

using one of the following two equations:

1. If node k is an Ô-node, it satisfies:

πnew
k − πnew

l = ckl

=⇒πold
k + δg − πold

l − δh = ckl

=⇒δh = δg − ckl − πold
l + πold

k (26)

2. If node k is a D-node, it satisfies:

ρnew
kl − πnew

l = ckl

=⇒ ρold
kl + δg − πold

l − δh = ckl

=⇒ δh = δg − ckl − πold
l + ρold

kl (27)

Now we can form a system of p + 1 equations composed by δg = 0, as well
as the p equations of δbc(i) =

∑
j∈L(i) kijδbc(ij) for each D-node i. Moreover, each

equation can be expressed using p+1 variables composed δα by for α = 1, 2, ..., p+1.
Therefore, the amount of change for each dual variable can be calculated by solving
this system of p + 1 linear equations.

Similar to the procedure in Section 3.2, we may speed up the procedure by
updating dual variables for those non-leaf basic components first, and then later for
the leaf basic components. The procedure to update dual variables is as follows:

Step 0: Initialize H := ∅, ND1 := ∅, where H stores the indices of leaf basic
components, and ND1 stores the indices of the D-node associated with leaf
basic components.
Let πold

i and ρold
ij denote the original dual variable associated with a node

i ∈ N and a distillation arc (i, j) ∈ A, respectively.
For each node i and side-node ij , set bc(i) and bc(ij) to be the index of the
basic component that contains i and ij , respectively.

Step 1: Remove the leaving arc (v, z) and split BCbc(z) into BCbc(z) and BCbc(v).
For the sake of convenience, let w := bc(z) and bc(v) := p + 2.
For each basic component α = 1, ..., p + 2, let δα represent the amount of
change for each dual variable inside BCα.
For the entering arc (k, l), let g := bc(k) and h := bc(l).

Step 2: Calculate δh by δg using δh = δg − πold
l + πold

k − ckl or δh = δg − πold
l +

ρold
kl − ckl, depending on whether node k is an Ô-node or a D-node.

Step 3: Add the entering arc (k, l) to merge BCh into BCg. For the sake of
convenience, let BCg := BCg ∪BCh and BCh := BCp+2.

Step 4: Identify the leaf basic components, add their indices into H, and add their
associated D-nodes into ND1.

Step 5: Set δr = 0 for some BCr not in H.
Step 6: Solve the system of equations composed by δbc(i) =

∑
j∈L(i) kijδbc(ij) :

∀i ∈ ND\ND1 and δr = 0.

A NETWORK SIMPLEX ALGORITHM FOR MDCP 949

Step 7: Solve the remaining δk : k ∈ H by δbc(i) =
∑

j∈L(i) kijδbc(ij) : ∀i ∈ ND1.
Step 8: Update each dual variable by πnew

i = πold
i +δα or ρnew

jk = ρold
jk + δαfor each

node i and side-node jk.

Although this procedure is practically faster than the procedure in Section 3.2,
it has the same theoretical complexity as O(min{p3, (n− p)3}+ n + p).

4. Conclusions. To efficiently solve the minimum distribution cost problem pro-
posed by Fang and Qi [8], this paper provided the first detailed graphical procedures
to implement the network simplex algorithm. We have carefully designed a basis
portioning technique to decompose a basic graph into several basic components
divided by D-nodes, where each component corresponds to a tree. We also pro-
vided sound theoretical background to support our algorithm, and proposed a set
of graphical operations to efficiently conduct the calculation for both primal and
dual variables. With our techniques, many computational efforts for calculating
the basic variables can be reduced, compared to other methods in the literature.
Techniques to speed up our algorithm have also been investigated with theoretical
support. Although omitted in this paper, for future research, we suggest investigat-
ing the degeneracy issues, which are usually encountered in simplex-like algorithms.

Acknowledgments. We would like to thank referee and editor for their valuable
comments. I-Lin Wang was partially supported by the National Science Council of
Taiwan under Grant NSC95-2221-E-006-268.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network Flows: Theory, Algorithms and
Applications,” Prentice Hall, Englewood Cliffs, New Jersey, U.S.A., 1993.

[2] R. Barr, F. Glover and D. Klingman, Enhancements to spanning tree labeling procedures for
network optimization, INFOR, 17 (1979), 16–34.

[3] G. H. Bradley, G. G. Brown and G. W. Graves, Design and implementation of large scale
primal transshipment algorithms, Management Science, 24 (1977), 1–34.

[4] M. D. Chang, C. H. J. Chen and M. Engquist, An improved primal simplex variant for pure
processing networks, ACM Transactions on Mathematical Software, 15 (1989), 64–78.

[5] C. H. J. Chen and M. Engquist, A primal simplex approach to pure processing networks,
Management Science, 32 (1986), 1582–1598.

[6] E. Cohen and N. Megiddo, Algorithms and complexity analysis for some flow problems, Al-
gorithmica, 11 (1994), 320–340.

[7] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik,
1 (1959), 269–271.

[8] S. C. Fang and L. Qi, Manufacturing network flows: A generalized network flow model for
manufacturing process modeling, Optimization Methods and Software, 18 (2003), 143–165.

[9] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of
Mathematics, 8 (1956), 399–404.

[10] F. Glover, D. Karney and D. Klingman, Implementation and computational comparisons
of primal, dual and primal-dual computer codes for minimum cost network flow problems,
Networks, 4 (1974), 191–212.

[11] F. Glover, D. Karney, D. Klingman and A. Napier, A computation study on start procedures,
basis change criteria and solution algorithms for transportation problems, Management Sci-
ence, 20 (1974), 793–813.

[12] F. Glover, D. Klingman and J. Stutz, Augmented threaded index method for network opti-
mization, INFOR, 12 (1974), 293–298.

[13] E. L. Johnson, Networks and basic solutions, Operations Research, 14 (1966), 619–623.
[14] J. L. Kennington and R. V. Helgason, “Algorithms for Network Programming,” John Wiley

& Sons, New York, NY, USA, 1980.

950 I-LIN WANG AND SHIOU-JIE LIN

[15] J. L. Kennington and R. V. Helgason, Minimum cost network flow algorithms, In “M.G.C.
Resende and P.M. Pardalos, editors, Handbook of Optimization in Telecommunications,”
chapter 6, 147–162. Springer, 2006.

[16] J. Koene, “Minimal Cost Flow in Processing Networks, A Primal Approach,” PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1982.

[17] H. Lu, E. Yao and L. Qi, Some further results on minimum distribution cost flow problems,
Journal of Combinatorial Optimization, 11 (2006), 351–371.

[18] J. Mo, L. Qi and Z. Wei, A network simplex algorithm for simple manufacturing network
model, Journal of Industrial and Management Optimization, 1 (2005), 251–273.

[19] R. L. Sheu, M. J. Ting and I. L. Wang, Maximum flow problem in the distribution network,
Journal of Industrial and Management Optimization, 2 (2006), 237–254.

[20] P. Venkateshan, K. Mathur and R. H. Ballou, An efficient generalized network-simplex-
based algorithm for manufacturing network flows, Journal of Combinatorial Optimization,
15 (2008), 315–341.

[21] I. L. Wang and J. C. Lin, Solving maximum flows on distribution networks: Network com-
paction and algorithm, In “Proceedings of the 10th Annual Conference of the Asia-Pacific
Decision Science Institute (APDSI),” Taipei, Taiwan, June 2005.

[22] I. L. Wang and Y. H. Yang, On solving the uncapacitated minimum cost flow problems in a
distribution network, International Journal of Reliability and Quality Performance, 1 (2008),
53–63.

Received October 2008; 1st revision June 2009; final revision July 2009.
E-mail address: ilinwang@mail.ncku.edu.tw

E-mail address: shioujielin@gmail.com

